π Publications
β : Equal contribution β: Corresponding author
Peer-reviewed Conference
Hongxin Xiang, Ke Li, Mingquan Liu, Zhixiang Cheng, Bin Yao, Wenjie Du, Jun Xia, Li Zeng, Xin Jinβ, Xiangxiang Zengβ, βEDBench: Large-Scale Electron Density Data for Molecular Modelingβ. Advances in Neural Information Processing Systems (NeurIPS) 2025. [pdf] [project page] [github] [database]
Xuan Lin, Qingrui Liu, Hongxin Xiangβ, Daojian Zeng, Xiangxiang Zeng, βEnhancing Chemical Reaction and Retrosynthesis Prediction with Large Language Model and Dual-task Learningβ. In Proceedings of the 34th International Joint Conference on Artificial Intelligence. 2025. [arXiv] [github]
Hongxin Xiang, Jun Xia, Xin Jin, Wenjie Du, Li Zeng, Xiangxiang Zengβ, βElectron Density-enhanced Molecular Geometry Learningβ. In Proceedings of the 34th International Joint Conference on Artificial Intelligence. 2025. [github]
Jun Xia, Sizhe Liu, Jingbo Zhou, Shaorong Chen, Hongxin Xiang, Zicheng Liu, Yue Liu, Stan Z. Li, βBridging the Gap between Database Search and De Novo Peptide Sequencing with SearchNovoβ. In Proceedings of The Thirteenth International Conference on Learning Representations. 2025. [paper] [github]
Shuai Zhang, Junfeng Fang, Xuqiang Li, Hongxin Xiang, Jun Xia, Ye Wei, Wenjie Du, Yang Wang, βIterative Substructure Extraction for Molecular Relational Learning with Interactive Graph Information Bottleneckβ. In Proceedings of The Thirteenth International Conference on Learning Representations. 2025. [paper]
Sizhe Liu, Jun Xia, Lecheng Zhang, Yuchen Liu, Yue Liu, Wenjie Du, Zhangyang Gao, Bozhen Hu, Cheng Tan, Hongxin Xiang, Stan Z. Li, βFlexMol: A Flexible Toolkit for Benchmarking Molecular Relational Learningβ, [paper] [arXiv] [github]
Hongxin Xiang, Shuting Jin, Jun Xia, Man Zhou, Jianmin Wang, Li Zeng, Xiangxiang Zeng, βAn Image-enhanced Molecular Graph Representation Learning Frameworkβ. In Proceedings of the 33th International Joint Conference on Artificial Intelligence. 2024. [paper] [github] [Poster] [PPT]
Peer-reviewed Journal
Hongxin Xiang, Mingquan Liu, Linlin Hou, Shuting Jin, Jianmin Wang, Jun Xia, Wenjie Du, Sisi Yuan, Xiangzheng Fu, Xinyu Yang, Li Zeng, and Lei Xuβ, βn Image-based Protein-Ligand Binding Representation Learning Framework via Multi-Level Flexible Dynamics Trajectory Pre-trainingβ. Bioinformatics, 2025. [paper] [github]
Shuting Jin, Xiangrong Liu, Junlin Xu, Sisi Yuan, Hongxin Xiang, Lian Shen, Chunyan Li, Zhangming Niu, Yinhui Jiang, βAdaptive symmetry-based adversarial perturbation augmentation for molecular graph representations with dual-fusion attention informationβ. Information Fusion, 2025. [paper] [github]
Jianmin Wang, Jiashun Mao, Chunyan Li, Hongxin Xiang, Xun Wang, Shuang Wang, Zixu Wang, Yangyang Chen, Yuquan Li, Kyoung Tai No, Tao Song & Xiangxiang Zeng, βInterface-aware molecular generative framework for proteinβprotein interaction modulatorsβ. Journal of Cheminformatics, 2024. [paper] [github]
Hongxin Xiang, Li Zeng, Linlin Hou, Kenli Li, Zhimin Fu, Yunguang Qiu, Ruth Nussinov, Jianying Hu, Michal Rosen-Zvi, Xiangxiang Zeng & Feixiong Cheng, βA molecular video-derived foundation model for scientific drug discoveryβ. Nature Communications, 2024. [paper] [github]
Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Heping Zheng, Zhuhong You, Hongxin Xiang & Quan Zou, βA spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scaleβ. Communications Biology, 2024. [paper] [github]
Linlin Houβ , Hongxin Xiangβ , Xiangxiang Zeng, Dongsheng Cao, Li Zeng, Bosheng Song, βAttribute-guided prototype network for few-shot molecular property predictionβ. Briefings in Bioinformatics, 2024. [paper] [github]
Xiang Zhang, Hongxin Xiangβ, Xixi Yang, Jingxin Dong, Xiangzheng Fu, Xiangxiang Zeng, Haowen Chenβ, Keqin Li, βChemical structure-aware molecular image representation learningβ. Dual-View Learning Based on Images and Sequences for Molecular Property Prediction, 2023. [paper] [github]
Hongxin Xiang, Shuting Jin, Xiangrong Liu, Xiangxiang Zeng, Li Zeng, βChemical structure-aware molecular image representation learningβ. Briefings in Bioinformatics, 2023. [paper] [github]
Xiangxiang Zengβ , Hongxin Xiangβ , Linhui Yu, Jianmin Wang, Kenli Li, Ruth Nussinov & Feixiong Cheng, βAccurate prediction of molecular properties and drug targets using a self-supervised image representation learning frameworkβ. Nature Machine Intelligence, 2022. [paper] [github]
Preprints & Under Submission
Zhixiang Chengβ , Hongxin Xiangβ , Pengsen Ma, Li Zeng, Xin Jin, Xixi Yang, Jianxin Lin, Yang Deng, Bosheng Song, Xinxin Feng, Changhui Deng, Xiangxiang Zeng, βMaskMol: Knowledge-guided Molecular Image Pre-Training Framework for Activity Cliffsβ. arXiv preprint arXiv:2505.09262. [paper]