πŸ“ Publications

†: Equal contribution βœ‰: Corresponding author

Peer-reviewed Conference

Paper Hongxin Xiang, Ke Li, Mingquan Liu, Zhixiang Cheng, Bin Yao, Wenjie Du, Jun Xia, Li Zeng, Xin Jinβœ‰, Xiangxiang Zengβœ‰, β€œEDBench: Large-Scale Electron Density Data for Molecular Modeling”. Advances in Neural Information Processing Systems (NeurIPS) 2025. [pdf] [project page] [github] [database]

Paper Xuan Lin, Qingrui Liu, Hongxin Xiangβœ‰, Daojian Zeng, Xiangxiang Zeng, β€œEnhancing Chemical Reaction and Retrosynthesis Prediction with Large Language Model and Dual-task Learning”. In Proceedings of the 34th International Joint Conference on Artificial Intelligence. 2025. [arXiv] [github]

Paper Hongxin Xiang, Jun Xia, Xin Jin, Wenjie Du, Li Zeng, Xiangxiang Zengβœ‰, β€œElectron Density-enhanced Molecular Geometry Learning”. In Proceedings of the 34th International Joint Conference on Artificial Intelligence. 2025. [github]

Paper Jun Xia, Sizhe Liu, Jingbo Zhou, Shaorong Chen, Hongxin Xiang, Zicheng Liu, Yue Liu, Stan Z. Li, β€œBridging the Gap between Database Search and De Novo Peptide Sequencing with SearchNovo”. In Proceedings of The Thirteenth International Conference on Learning Representations. 2025. [paper] [github]

Paper Shuai Zhang, Junfeng Fang, Xuqiang Li, Hongxin Xiang, Jun Xia, Ye Wei, Wenjie Du, Yang Wang, β€œIterative Substructure Extraction for Molecular Relational Learning with Interactive Graph Information Bottleneck”. In Proceedings of The Thirteenth International Conference on Learning Representations. 2025. [paper]

Paper Sizhe Liu, Jun Xia, Lecheng Zhang, Yuchen Liu, Yue Liu, Wenjie Du, Zhangyang Gao, Bozhen Hu, Cheng Tan, Hongxin Xiang, Stan Z. Li, β€œFlexMol: A Flexible Toolkit for Benchmarking Molecular Relational Learning”, [paper] [arXiv] [github]

Paper Hongxin Xiang, Shuting Jin, Jun Xia, Man Zhou, Jianmin Wang, Li Zeng, Xiangxiang Zeng, β€œAn Image-enhanced Molecular Graph Representation Learning Framework”. In Proceedings of the 33th International Joint Conference on Artificial Intelligence. 2024. [paper] [github] [Poster] [PPT]

Peer-reviewed Journal

Paper Hongxin Xiang, Mingquan Liu, Linlin Hou, Shuting Jin, Jianmin Wang, Jun Xia, Wenjie Du, Sisi Yuan, Xiangzheng Fu, Xinyu Yang, Li Zeng, and Lei Xuβœ‰, β€œn Image-based Protein-Ligand Binding Representation Learning Framework via Multi-Level Flexible Dynamics Trajectory Pre-training”. Bioinformatics, 2025. [paper] [github]

Paper Shuting Jin, Xiangrong Liu, Junlin Xu, Sisi Yuan, Hongxin Xiang, Lian Shen, Chunyan Li, Zhangming Niu, Yinhui Jiang, β€œAdaptive symmetry-based adversarial perturbation augmentation for molecular graph representations with dual-fusion attention information”. Information Fusion, 2025. [paper] [github]

Paper Jianmin Wang, Jiashun Mao, Chunyan Li, Hongxin Xiang, Xun Wang, Shuang Wang, Zixu Wang, Yangyang Chen, Yuquan Li, Kyoung Tai No, Tao Song & Xiangxiang Zeng, β€œInterface-aware molecular generative framework for protein–protein interaction modulators”. Journal of Cheminformatics, 2024. [paper] [github]

Paper Hongxin Xiang, Li Zeng, Linlin Hou, Kenli Li, Zhimin Fu, Yunguang Qiu, Ruth Nussinov, Jianying Hu, Michal Rosen-Zvi, Xiangxiang Zeng & Feixiong Cheng, β€œA molecular video-derived foundation model for scientific drug discovery”. Nature Communications, 2024. [paper] [github]

Paper Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Heping Zheng, Zhuhong You, Hongxin Xiang & Quan Zou, β€œA spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scale”. Communications Biology, 2024. [paper] [github]

Paper Linlin Hou†, Hongxin Xiang†, Xiangxiang Zeng, Dongsheng Cao, Li Zeng, Bosheng Song, β€œAttribute-guided prototype network for few-shot molecular property prediction”. Briefings in Bioinformatics, 2024. [paper] [github]

Paper Xiang Zhang, Hongxin Xiangβœ‰, Xixi Yang, Jingxin Dong, Xiangzheng Fu, Xiangxiang Zeng, Haowen Chenβœ‰, Keqin Li, β€œChemical structure-aware molecular image representation learning”. Dual-View Learning Based on Images and Sequences for Molecular Property Prediction, 2023. [paper] [github]

Paper Hongxin Xiang, Shuting Jin, Xiangrong Liu, Xiangxiang Zeng, Li Zeng, β€œChemical structure-aware molecular image representation learning”. Briefings in Bioinformatics, 2023. [paper] [github]

Paper Xiangxiang Zeng†, Hongxin Xiang†, Linhui Yu, Jianmin Wang, Kenli Li, Ruth Nussinov & Feixiong Cheng, β€œAccurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework”. Nature Machine Intelligence, 2022. [paper] [github]

Preprints & Under Submission

Zhixiang Cheng†, Hongxin Xiang†, Pengsen Ma, Li Zeng, Xin Jin, Xixi Yang, Jianxin Lin, Yang Deng, Bosheng Song, Xinxin Feng, Changhui Deng, Xiangxiang Zeng, β€œMaskMol: Knowledge-guided Molecular Image Pre-Training Framework for Activity Cliffs”. arXiv preprint arXiv:2505.09262. [paper]